lunes, 3 de febrero de 2014

El Acero




¿Qué es el acero? Microconstituyentes, estructuras cristalinas.

Acero ( Steel ): Es toda aleación Fe-C entre 0,008% y 1,76% de Carbono.

El término acero sirve comúnmente para denominar, en ingeniería metalúrgica, a una aleación de hierro con una cantidad de carbono variable entre el 0,03% y el 1,075% en peso de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,0% se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas.

No se debe confundir el acero con el hierro, que es un metal relativamente duro y tenaz.

La diferencia principal entre el hierro y el acero se halla en el porcentaje del carbono: el acero es hierro con un porcentaje de carbono de entre el 0,03% y el 1,075%, a partir de este porcentaje se consideran otras aleaciones con hierro.

El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas.



Usualmente se define al acero como una aleación de hierro y carbono con contenido de carbono 

entre unas pocas centésimas y 2 % (en peso). En los aceros de baja aleación pueden encontrarse otros 

elementos hasta una cantidad total acumulada de 5%; cuando se encuentran en cantidades superiores se los 
denomina aceros fuertemente aleados, tal como los de herramientas y los inoxidables. 
Los aceros pueden presentar una gran variedad de propiedades según su composición química y las 
fases y constituyentes presentes, lo que eventualmente, depende del tratamiento térmico.






El hierro puro presenta tres estados alotrópicos a medida que se incrementa la temperatura desde la temperatura ambiente:
  • Hasta los 911 °C, el hierro ordinario, cristaliza en el sistema cúbico centrado en el cuerpo (BCC) y recibe la denominación de hierro α o ferrita. Es un material dúctil y maleable responsable de la buena forjabilidad de las aleaciones con bajo contenido en carbono y es ferromagnético hasta los 768 °C (temperatura de Curie a la que pierde dicha cualidad). La ferrita puede disolver muy pequeñas cantidades de carbono
  • Entre 911 y 1400 °C cristaliza en el sistema cúbico centrado en las caras (FCC) y recibe la denominación de hierro γ o austenita. Dada su mayor compacidad la austenita se deforma con mayor facilidad y es paramagnética.
  • Entre 1400 y 1538 °C cristaliza de nuevo en el sistema cúbico centrado en el cuerpo y recibe la denominación de hierro δ que es en esencia el mismo hierro alfa pero con parámetro de red mayor por efecto de la temperatura.
A mayor temperatura el hierro se encuentra en estado líquido.
Si se añade carbono al hierro, sus átomos podrían situarse simplemente en los intersticios de la red cristalina de éste último; sin embargo en los aceros aparece combinado formando carburo de hierro (Fe3C), es decir, un compuesto químico definido y que recibe la denominación de cementita de modo que los aceros al carbono están constituidos realmente por ferrita y cementita.


El acero es una estructura cristalina de moléculas de hierro intercaladas con moléculas de carbono, cuyo nombre correcto es "cementita". La dureza y maleablidad del acero depende no sólo del contenido de carbono, sino de cómo se unen sus moléculas unas con otras. Las tensiones internas en la estructura cristalina del acero aumentarán o disminuirán dependiendo de la temperatura a la que está sujeto y la velocidad a la que es enfriado el acero líquido.


 Características físicas de los aceros.

Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas:
  • Su densidad media es de 7850 kg/m³.
  • En función de la temperatura el acero se puede contraer, dilatar o fundir.
  • El punto de fusión del acero depende del tipo de aleación y los porcentajes de elementos aleantes. El de su componente principal, el hierro es de alrededor de 1.510 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1.375 °C, y en general la temperatura necesaria para la fusión aumenta a medida que se aumenta el porcentaje de carbono y de otros aleantes. (excepto las aleaciones eutécticas que funden de golpe). Por otra parte el acero rápido funde a 1.650 °C.15
  • Su punto de ebullición es de alrededor de 3.000 °C.
  • Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
  • Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
  • Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lámina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
  • Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
  • Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
  • La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos.
  • Se puede soldar con facilidad.
  • La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. 
  • Posee una alta conductividad eléctrica. 
  • Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. 
  • Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. 




 Diagrama hierro-carbono ( iron-carbon )

En el diagrama de equilibrio o de fases, Fe-C se representan las transformaciones que sufren los aceros al carbono con la temperatura, admitiendo que el calentamiento (o enfriamiento) de la mezcla se realiza muy lentamente`, de tal forma que el proceso de mezcla se realiza completamente.


 Clasificación de los aceros en función del porcentaje de carbono.


Es una clasificación general empleada para dar una idea de las propiedades de los aceros según los elementos que contenga.

- Aceros al carbono: son aquellos aceros que contienen menos del 3% en elementos                       diferentes al hierro                                           o carbono.
- Aceros de alto carbono: contiene más de 0,5% de carbono.
- Aceros de bajo carbono: contiene menos de 0.3% de carbono.
- Aceros de mediano carbono: contiene entre 0.3 y 0.5% de carbono.
     Acero de aleación: acero que contiene otro metal que fue añadido                                            intencionalmente con el fin de     mejorar ciertas          propiedades del metal.

Clasificación del acero por su contenido de Carbono:

- Aceros Extrasuaves: su contenido de carbono varia entre el 0.1 y el 0.2%
- Aceros suaves: su contenido de carbono esta entre el 0.2 y 0.3%
- Aceros semisuaves: su contenido de carbono oscila entre 0.3 y el 0.4%
- Aceros semiduros: su carbono está presente entre 0.4 y 0.5%
- Aceros duros: la presencia de carbono varia entre 0.5 y 0.6%
- Aceros extraduros: El contenido de carbono que presentan esta entre el 0.6 y el 07 %


Relación entre características físicas y tamaño de grano.- Otros productos siderurgicos y sus características.



Se han estudiado tanto aceros estables como metaestables para valorar las diferencias de comportamiento, considerando varias coladas de cada material para promediar los resultados y obtener un comportamiento más robusto de los estimadores. Se ha procedido a una preparación y adecuación de las probetas, previa a su ensayo en laboratorio. Se han observado los comportamientos habituales de modo que, a mayor número de tamaño de grano según norma ASTM, mayor límite elástico y resistencia a la tracción y menor alargamiento; llevándose a cabo estudios de detalle de valores de las tendencias de crecimiento, comportamiento comparado de estables y metaestables y valorándose cuidadosamente la influencia del níquel presente en el material. Finalmente se presentan las principales conclusiones y valoraciones, y un estudio estadístico de las propiedades mecánicas y de las distintas coladas para lograr una mejor predicción de comportamiento.

Los productos siderúrgicos derivados del acero y del hierro son, con mucha diferencia, los más utilizados de los metales conocidos, siendo su producción mundial superior en veinte veces a la de los demás metales. 



Fundición de hierro 160.000 
Cobre 2.865 
Aluminio 1.790 
Plomo 1.760                 miles de toneladas
Cinc 2.223 
Níquel 110 
Estaño 175 



Los productos siderúrgicos ( iron and steel ): son productos siderúrgicos que se obtienen por la reducción de los óxidos de hierro en los altos hornos, en los que se introducen los minerales, combustibles, fundentes y aire. Dependiendo del contenido en carbono de la aleación de hierro encontramos tres tipos:

           -Fundición: Son aleaciones hierro-carbono con contenidos de entre el 1.7 al 6.7% de                         carbono.

           -Hierros: reciben este nombre los aceros extrasuaves con 0.05 a 0.15% de carbono.

          -Aceros: son aleaciones con menos del 2% de carbono. De carácter maleable, templan                  bien debido a que                        su contenido de carbono supera el 0,25%. Al                             aumentar el porcentaje de carbono, mejoran                                 ciertas propiedades                   como la resistencia a la tracción, límite elástico y dureza. Sin embargo                                           disminuye la ductibilidad, resiliencia y alargamiento de rotura. 
                       -Se distinguen diferencian varios  tipos:
    • Aceros ordinarios: se clasifican en función de su contenido en carbono. Pertenecen a este tipo los denominados F-115 y F-145, que se utilizan en la fabricación de ejes para anclajes y chapas.

    • Aceros aleados: son aceros a los que se añaden elementos adicionales al hierro y al carbono para modificar sus propiedades. Normalmente incorporan manganeso, níquel, cromo, molibdeno, vanadio, wolframio, silicio, etc. De esta manera el cromo aumenta la dureza y constituye la base de los aceros inoxidables, el wolframio se usa en aceros rápidos para la fabricación de herramientas, el níquel hace aumentar la tenacidad. Existen los siguientes tipos:

    • -Aceros aleados de gran resistencia: para usos en los que sea necesaria una gran resistencia a la tracción con buena tenacidad y resiliencia. Se encuentran aceros al níquel, cromo-níquel, cromo-molibdeno y cromo-níquel-molibdeno. Se emplea para pitones y clavos y tornillos de hielo.

    • -Aceros de gran elasticidad: deben tener suficiente resiliencia sin que disminuya mucho el límite elástico.

    • -Aceros de cementación: son aceros de bajo contenido en carbono que se destinan a la fabricación de piezas cuyo núcleo debe ser tenaz y su superficie muy dura y resistente. Se logran sometiendo a las piezas a un proceso de carburación superficial. 

    • -Aceros inoxidables: son aceros destinados a resistir el efecto corrosivo de los medios naturales o industriales. Están constituidos por mezclas de cromo con contenidos de carbono que le dan dureza. En materiales de montaña se utilizan los denominados 18-8 (18% de cromo, 8% de níquel y 18-12 (18% de manganeso y 12% de cromo) ambos con contenidos en carbono menor del 0.1%.

    • -Aceros de alto contenido en carbono: incorporan adicionalmente cromo y wolframio, que proporcionan dureza y resistencia al desgaste.

    • -Aceros rápidos: utilizados en la fabricación de herramientas cortantes, como el llamado 18-4-1 (18% de Wolframio, 4% de cromo, 1 % de vanadio y 0. 7-0.8% de carbono). En el desarrollo de nuestras actividades en montaña sólo encontraremos este tipo de aceros en las brocas de "widia", que usamos para taladrar la roca.


Aleantes y características que aportan al acero.


A continuación se listan algunos de los efectos de los elementos aleantes en el acero:
  • Aluminio ( aluminiun ): se usa en algunos aceros de nitruración al Cr-Al-Mo de alta dureza en concentraciones cercanas al 1% y en porcentajes inferiores al 0,008% como desoxidante en aceros de alta aleación.

  • Boro ( boron ): en muy pequeñas cantidades (del 0,001 al 0,006%) aumenta la templabilidad sin reducir la maquinabilidad, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro. Es usado en aceros de baja aleación en aplicaciones como cuchillas de arado y alambres de alta ductilidad y dureza superficial. Utilizado también como trampa de nitrógeno, especialmente en aceros para trefilación, para obtener valores de N menores a 80 ppm.

  • Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la resistencia y la dureza en caliente. Es un elemento poco habitual en los aceros. Aumenta las propiedades magnéticas de los aceros. Se usa en los aceros rápidos para herramientas y en aceros refractarios.



  • Cromo ( chomium) : Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, mejora la resistencia a la corrosión. Aumenta la profundidad de penetración del endurecimiento por tratamiento termoquímico como la carburación o la nitruración. Se usa en aceros inoxidables, aceros para herramientas y refractarios. También se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.

  • Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.


  • Nitrógeno ( nitrogen ): se agrega a algunos aceros para promover la formación de austenita.

  • Níquel ( nickel ): es un elemento gammageno permitiendo una estructura austenítica a temperatura ambiente, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.

  • Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente. Se añade a algunos aceros para mejorar mucho la maquinabilidad.

  • Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.

  • Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura. Se utiliza su gran afinidad con el Carbono para evitar la formación de carburo de hierro al soldar acero.

  • Wolframio: también conocido como tungsteno. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de los aceros al carbono para herramientas.

  • Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
    .


Tratamientos térmicos. Explicar en base a diagrama Fe-C y desarrollar sus diagramas TTT.


Un proceso de tratamiento térmico adecuado permite aumentar significativamente las propiedades mecánicas de dureza, tenacidad y resistencia mecánica del acero. Los tratamientos térmicos cambian la microestructura del material, con lo que las propiedades macroscópicas del acero también son alteradas.
Los tratamientos térmicos que pueden aplicarse al acero sin cambiar en su composición química son:
  • temple
  • revenido
  • recocido
  • normalizado
Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales. Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a lacorrosión.
  • Cementación (C): aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. El tratamiento logra aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo.
  • Nitruración (N): al igual que la cementación, aumenta la dureza superficial, aunque lo hace en mayor medida, incorporando nitrógeno en la composición de la superficie de la pieza. Se logra calentando el acero a temperaturas comprendidas entre 400 y 525 °C, dentro de una corriente de gas amoníaco, más nitrógeno.
  • Cianuración (C+N): endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianuro, carbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 °C.
  • Carbonitruración (C+N): al igual que la cianuración, introduce carbono y nitrógeno en una capa superficial, pero con hidrocarburos como metano, etano o propano; amoníaco (NH3) y monóxido de carbono (CO). En el proceso se requieren temperaturas de 650 a 850 °C y es necesario realizar un temple y un revenido posterior.
  • Sulfinización (S+N+C): aumenta la resistencia al desgaste por acción del azufre. El azufre se incorporó al metal por calentamiento a baja temperatura (565 °C) en un baño de sales.
Entre los factores que afectan a los procesos de tratamiento térmico del acero se encuentran la temperatura y el tiempo durante el que se expone a dichas condiciones al material. Otro factor determinante es la forma en la que el acero vuelve a la temperatura ambiente. El enfriamiento del proceso puede incluir su inmersión en aceite o el uso del aire como refrigerante.
El método del tratamiento térmico, incluyendo su enfriamiento, influye en que el acero tome sus propiedades comerciales.
Según ese método, en algunos sistemas de clasificación, se le asigna un prefijo indicativo del tipo. Por ejemplo, el acero O-1, o A2, A6 (o S7) donde la letra "O" es indicativo del uso de aceite (del inglés: oil quenched), y "A" es la inicial de aire; el prefijo "S" es indicativo que el acero ha sido tratado y considerado resistente al golpeo (Shock resistant).




Diagrama Fe-C


Es un hecho experimental que cuando un acero es calentado o enfriado se pueden llegar a producir cambios en su estructura, cambios de fase.
Llamaremos fase a cada una de las partes homogéneas físicamente separables en un sistema formado por uno o varios componentes.
Centrándonos en los aceros un cambio de fase será pues un proceso en el que el acero cambie de estructura interna y por tanto de propiedades físicas.
A la temperatura a la que se producen cada uno de estos cambios se le conoce como “punto crítico”.
El estudio de estas transformaciones se realiza desde un doble punto de vista.
Por un lado estudiaremos la termodinámica del proceso: a través de los diagramas Fe-C se determinará el estado de equilibrio que alcanzaría el sistema en unas conciones dadas de composición y temperatura.
Por otro lado se estudia la cinética (la velocidad) del proceso, es decir, el estado que realmente alcanza el sistema en función de la velocidad a la que se realiza el enfriamiento. Para ello utilizaremos los diagramas TTT.

- Diagrama Fe-C

Si representamos en un gráfico temperatura- composición los puntos en los que se producen estas transformaciones, obtendremos unas líneas que se corresponden con las condiciones de las transformaciones.
Las líneas más importantes que se obtienen reciben los siguientes nombres:
A1(Ac1ó Ar1):Temperatura del eutectoide. 
A3(Ac3o Ar3):Línea de transformación alotrópica de austenita en ferrita.
Am(Acmo Arm):Curva de pérdida de solubilidad de carbono en la austenita.
En el diagrama Fe-C puede verse como cuando un acero con un contenido bajo en carbono es enfriado lentamente, su estructura estará formada principalmente por ferrita.
Si se trata de un acero de alto contenido en carbono se favorece la formación de cementita dura.
Y para aceros de un 0.8 % de carbono la estructura obtenida es 100 % perlítica.
Para el estudio de las transformaciones de fase del acero se utilizará el acero eutectoide. Este acero es el que se corresponde con una composición del 0.8%C y un estructura 100% de perlita. Para el resto de los aceros habrá que tener en cuenta la presencia de otros constituyentes estructurales, como la ferrita y la cementita.







No hay comentarios:

Publicar un comentario